Skip to contents

The binomial distribution is a discrete probability distribution which models the probability of having x successes in n independent Bernoulli trials with success probability p.

Usage

Binom(size = 1, prob = 0.5)

# S4 method for class 'Binom,numeric'
d(distr, x, log = FALSE)

# S4 method for class 'Binom,numeric'
p(distr, q, lower.tail = TRUE, log.p = FALSE)

# S4 method for class 'Binom,numeric'
qn(distr, p, lower.tail = TRUE, log.p = FALSE)

# S4 method for class 'Binom,numeric'
r(distr, n)

# S4 method for class 'Binom'
mean(x)

# S4 method for class 'Binom'
var(x)

# S4 method for class 'Binom'
sd(x)

# S4 method for class 'Binom'
skew(x)

# S4 method for class 'Binom'
kurt(x)

# S4 method for class 'Binom'
entro(x)

# S4 method for class 'Binom'
finf(x)

llbinom(x, size, prob)

# S4 method for class 'Binom,numeric'
ll(distr, x)

ebinom(x, size, type = "mle", ...)

# S4 method for class 'Binom,numeric'
mle(distr, x, na.rm = FALSE)

# S4 method for class 'Binom,numeric'
me(distr, x, na.rm = FALSE)

vbinom(size, prob, type = "mle")

# S4 method for class 'Binom'
avar_mle(distr)

# S4 method for class 'Binom'
avar_me(distr)

Arguments

size

number of trials (zero or more).

prob

numeric. Probability of success on each trial.

distr

an object of class Binom.

x

For the density function, x is a numeric vector of quantiles. For the moments functions, x is an object of class Binom. For the log-likelihood and the estimation functions, x is the sample of observations.

log, log.p

logical. Should the logarithm of the probability be returned?

q

numeric. Vector of quantiles.

lower.tail

logical. If TRUE (default), probabilities are \(P(X \leq x)\), otherwise \(P(X > x)\).

p

numeric. Vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

type

character, case ignored. The estimator type (mle or me).

...

extra arguments.

na.rm

logical. Should the NA values be removed?

Value

Each type of function returns a different type of object:

  • Distribution Functions: When supplied with one argument (distr), the d(), p(), q(), r(), ll() functions return the density, cumulative probability, quantile, random sample generator, and log-likelihood functions, respectively. When supplied with both arguments (distr and x), they evaluate the aforementioned functions directly.

  • Moments: Returns a numeric, either vector or matrix depending on the moment and the distribution. The moments() function returns a list with all the available methods.

  • Estimation: Returns a list, the estimators of the unknown parameters. Note that in distribution families like the binomial, multinomial, and negative binomial, the size is not returned, since it is considered known.

  • Variance: Returns a named matrix. The asymptotic covariance matrix of the estimator.

Details

The probability mass function (PMF) of the binomial distribution is given by: $$ f(x; n, p) = \binom{n}{x} p^x (1 - p)^{n - x}, \quad N \in \mathbb{N}, \quad p \in (0, 1),$$ with \(x \in \{0, 1, \dots, N\}\).

See also

Functions from the stats package: dbinom(), pbinom(), qbinom(), rbinom()

Examples

# -----------------------------------------------------
# Binomial Distribution Example
# -----------------------------------------------------

# Create the distribution
N <- 10 ; p <- 0.7
D <- Binom(N, p)

# ------------------
# dpqr Functions
# ------------------

d(D, 0:N) # density function
#>  [1] 0.0000059049 0.0001377810 0.0014467005 0.0090016920 0.0367569090
#>  [6] 0.1029193452 0.2001209490 0.2668279320 0.2334744405 0.1210608210
#> [11] 0.0282475249
p(D, 0:N) # distribution function
#>  [1] 0.0000059049 0.0001436859 0.0015903864 0.0105920784 0.0473489874
#>  [6] 0.1502683326 0.3503892816 0.6172172136 0.8506916541 0.9717524751
#> [11] 1.0000000000
qn(D, c(0.4, 0.8)) # inverse distribution function
#> [1] 7 8
x <- r(D, 100) # random generator function

# alternative way to use the function
df <- d(D) ; df(x) # df is a function itself
#>   [1] 0.121060821 0.200120949 0.233474440 0.028247525 0.121060821 0.200120949
#>   [7] 0.266827932 0.233474440 0.266827932 0.200120949 0.200120949 0.102919345
#>  [13] 0.266827932 0.266827932 0.233474440 0.266827932 0.102919345 0.266827932
#>  [19] 0.200120949 0.266827932 0.200120949 0.266827932 0.102919345 0.200120949
#>  [25] 0.233474440 0.121060821 0.121060821 0.200120949 0.233474440 0.121060821
#>  [31] 0.036756909 0.266827932 0.121060821 0.266827932 0.121060821 0.036756909
#>  [37] 0.121060821 0.233474440 0.102919345 0.036756909 0.200120949 0.102919345
#>  [43] 0.036756909 0.121060821 0.266827932 0.266827932 0.009001692 0.233474440
#>  [49] 0.102919345 0.266827932 0.102919345 0.266827932 0.102919345 0.102919345
#>  [55] 0.233474440 0.028247525 0.233474440 0.102919345 0.233474440 0.102919345
#>  [61] 0.036756909 0.028247525 0.266827932 0.233474440 0.266827932 0.200120949
#>  [67] 0.102919345 0.233474440 0.102919345 0.200120949 0.200120949 0.121060821
#>  [73] 0.233474440 0.200120949 0.102919345 0.233474440 0.266827932 0.266827932
#>  [79] 0.266827932 0.233474440 0.028247525 0.233474440 0.266827932 0.200120949
#>  [85] 0.121060821 0.233474440 0.233474440 0.266827932 0.028247525 0.121060821
#>  [91] 0.009001692 0.102919345 0.121060821 0.121060821 0.233474440 0.266827932
#>  [97] 0.200120949 0.266827932 0.121060821 0.102919345

# ------------------
# Moments
# ------------------

mean(D) # Expectation
#> [1] 7
var(D) # Variance
#> [1] 2.1
sd(D) # Standard Deviation
#> [1] 1.449138
skew(D) # Skewness
#> [1] -0.2760262
kurt(D) # Excess Kurtosis
#> [1] -0.1238095
entro(D) # Entropy
#> Warning: The entropy given is an approximation in the O(1 / n) order.
#> [1] 2.58229
finf(D) # Fisher Information Matrix
#> [1] 47.61905

# List of all available moments
mom <- moments(D)
#> Warning: The entropy given is an approximation in the O(1 / n) order.
mom$mean # expectation
#> [1] 7

# ------------------
# Point Estimation
# ------------------

ll(D, x)
#> [1] -193.9824
llbinom(x, N, p)
#> [1] -193.9824

ebinom(x, size = N, type = "mle")
#> $prob
#> [1] 0.694
#> 
ebinom(x, size = N, type = "me")
#> $prob
#> [1] 0.694
#> 

mle(D, x)
#> $prob
#> [1] 0.694
#> 
me(D, x)
#> $prob
#> [1] 0.694
#> 
e(D, x, type = "mle")
#> $prob
#> [1] 0.694
#> 

# ------------------
# Estimator Variance
# ------------------

vbinom(N, p, type = "mle")
#>  prob 
#> 0.021 
vbinom(N, p, type = "me")
#>  prob 
#> 0.021 

avar_mle(D)
#>  prob 
#> 0.021 
avar_me(D)
#>  prob 
#> 0.021 

v(D, type = "mle")
#>  prob 
#> 0.021