The Categorical distribution is a discrete probability distribution that describes the probability of a single trial resulting in one of \(k\) possible categories. It is a generalization of the Bernoulli distribution and a special case of the multinomial distribution with \(n = 1\).
Usage
Cat(prob = c(0.5, 0.5))
dcat(x, prob, log = FALSE)
rcat(n, prob)
# S4 method for class 'Cat,numeric'
d(distr, x, log = FALSE)
# S4 method for class 'Cat,numeric'
r(distr, n)
# S4 method for class 'Cat'
mean(x)
# S4 method for class 'Cat'
mode(x)
# S4 method for class 'Cat'
var(x)
# S4 method for class 'Cat'
entro(x)
# S4 method for class 'Cat'
finf(x)
llcat(x, prob)
# S4 method for class 'Cat,numeric'
ll(distr, x)
ecat(x, type = "mle", ...)
# S4 method for class 'Cat,numeric'
mle(distr, x, dim = NULL, na.rm = FALSE)
# S4 method for class 'Cat,numeric'
me(distr, x, dim = NULL, na.rm = FALSE)
vcat(prob, type = "mle")
# S4 method for class 'Cat'
avar_mle(distr)
# S4 method for class 'Cat'
avar_me(distr)
Arguments
- prob
numeric. Probability vector of success for each category.
- x
For the density function,
x
is a numeric vector of quantiles. For the moments functions,x
is an object of classCat
. For the log-likelihood and the estimation functions,x
is the sample of observations.- log
logical. Should the logarithm of the probability be returned?
- n
number of observations. If
length(n) > 1
, the length is taken to be the number required.- distr
an object of class
Cat
.- type
character, case ignored. The estimator type (mle or me).
- ...
extra arguments.
- dim
numeric. The probability vector dimension. See Details.
- na.rm
logical. Should the
NA
values be removed?
Value
Each type of function returns a different type of object:
Distribution Functions: When supplied with one argument (
distr
), thed()
,p()
,q()
,r()
,ll()
functions return the density, cumulative probability, quantile, random sample generator, and log-likelihood functions, respectively. When supplied with both arguments (distr
andx
), they evaluate the aforementioned functions directly.Moments: Returns a numeric, either vector or matrix depending on the moment and the distribution. The
moments()
function returns a list with all the available methods.Estimation: Returns a list, the estimators of the unknown parameters. Note that in distribution families like the binomial, multinomial, and negative binomial, the size is not returned, since it is considered known.
Variance: Returns a named matrix. The asymptotic covariance matrix of the estimator.
Details
The probability mass function (PMF) of the categorical distribution is given by: $$ f(x; p) = \prod_{i=1}^k p_i^{x_i},$$ subject to \( \sum_{i=1}^{k} x_i = n \).
The estimation of prob
from a sample would by default return a vector of
probabilities corresponding to the categories that appeared in the sample and
0 for the rest. However, the parameter dimension cannot be uncovered by the
sample, it has to be provided separately. This can be done with the argument
dim
. If dim
is not supplied, the dimension will be retrieved from the
distr
argument. Categories that did not appear in the sample will have 0
probabilities appended to the end of the prob vector.
Note that the actual dimension of the probability parameter vector is k-1
,
therefore the Fisher information matrix and the asymptotic variance -
covariance matrix of the estimators is of dimension (k-1)x(k-1)
.
Examples
# -----------------------------------------------------
# Categorical Distribution Example
# -----------------------------------------------------
# Create the distribution
p <- c(0.1, 0.2, 0.7)
D <- Cat(p)
# ------------------
# dpqr Functions
# ------------------
d(D, 2) # density function
#> [1] 0.2
x <- r(D, 100) # random generator function
# alternative way to use the function
df <- d(D) ; df(x) # df is a function itself
#> [1] 0.2 0.7 0.7 0.7 0.2 0.1 0.7 0.2 0.7 0.2 0.2 0.2 0.7 0.7 0.7 0.7 0.7 0.7
#> [19] 0.7 0.7 0.7 0.7 0.2 0.7 0.7 0.7 0.7 0.7 0.2 0.7 0.7 0.7 0.7 0.7 0.7 0.2
#> [37] 0.2 0.7 0.7 0.2 0.7 0.7 0.7 0.7 0.7 0.7 0.2 0.7 0.2 0.2 0.7 0.7 0.7 0.1
#> [55] 0.1 0.7 0.2 0.7 0.2 0.7 0.7 0.7 0.1 0.2 0.7 0.7 0.7 0.2 0.7 0.7 0.7 0.7
#> [73] 0.7 0.7 0.7 0.1 0.7 0.2 0.7 0.7 0.1 0.2 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
#> [91] 0.1 0.7 0.7 0.2 0.7 0.7 0.7 0.7 0.7 0.7
# ------------------
# Moments
# ------------------
mean(D) # Expectation
#> [1] 0.1 0.2 0.7
mode(D) # Mode
#> [1] 3
var(D) # Variance
#> [,1] [,2] [,3]
#> [1,] 0.09 -0.02 -0.07
#> [2,] -0.02 0.16 -0.14
#> [3,] -0.07 -0.14 0.21
entro(D) # Entropy
#> [1] 0.3250830 0.5004024 0.6108643
finf(D) # Fisher Information Matrix
#> prob1 prob2
#> prob1 11.428571 1.428571
#> prob2 1.428571 6.428571
# List of all available moments
mom <- moments(D)
mom$mean # expectation
#> [1] 0.1 0.2 0.7
# ------------------
# Point Estimation
# ------------------
ll(D, x)
#> [1] -75.59689
llcat(x, p)
#> [1] -75.59689
ecat(x, dim = 3, type = "mle")
#> $prob
#> [1] 0.07 0.21 0.72
#>
ecat(x, dim = 3, type = "me")
#> $prob
#> [1] 0.07 0.21 0.72
#>
mle(D, x)
#> $prob
#> [1] 0.07 0.21 0.72
#>
me(D, x)
#> $prob
#> [1] 0.07 0.21 0.72
#>
e(D, x, type = "mle")
#> $prob
#> [1] 0.07 0.21 0.72
#>
mle("cat", dim = 3, x) # the distr argument can be a character
#> $prob
#> [1] 0.07 0.21 0.72
#>
# ------------------
# Estimator Variance
# ------------------
vcat(p, type = "mle")
#> prob1 prob2
#> prob1 0.09 -0.02
#> prob2 -0.02 0.16
vcat(p, type = "me")
#> prob1 prob2
#> prob1 0.09 -0.02
#> prob2 -0.02 0.16
avar_mle(D)
#> prob1 prob2
#> prob1 0.09 -0.02
#> prob2 -0.02 0.16
avar_me(D)
#> prob1 prob2
#> prob1 0.09 -0.02
#> prob2 -0.02 0.16
v(D, type = "mle")
#> prob1 prob2
#> prob1 0.09 -0.02
#> prob2 -0.02 0.16