Skip to contents

The Chi-Square distribution is a continuous probability distribution commonly used in statistical inference, particularly in hypothesis testing and confidence interval estimation. It is defined by the degrees of freedom parameter \(k > 0\).

Usage

Chisq(df = 1)

# S4 method for class 'Chisq,numeric'
d(distr, x, log = FALSE)

# S4 method for class 'Chisq,numeric'
p(distr, q, lower.tail = TRUE, log.p = FALSE)

# S4 method for class 'Chisq,numeric'
qn(distr, p, lower.tail = TRUE, log.p = FALSE)

# S4 method for class 'Chisq,numeric'
r(distr, n)

# S4 method for class 'Chisq'
mean(x)

# S4 method for class 'Chisq'
median(x)

# S4 method for class 'Chisq'
mode(x)

# S4 method for class 'Chisq'
var(x)

# S4 method for class 'Chisq'
sd(x)

# S4 method for class 'Chisq'
skew(x)

# S4 method for class 'Chisq'
kurt(x)

# S4 method for class 'Chisq'
entro(x)

# S4 method for class 'Chisq'
finf(x)

llchisq(x, df)

# S4 method for class 'Chisq,numeric'
ll(distr, x)

echisq(x, type = "mle", ...)

# S4 method for class 'Chisq,numeric'
mle(distr, x, na.rm = FALSE)

# S4 method for class 'Chisq,numeric'
me(distr, x, na.rm = FALSE)

vchisq(df, type = "mle")

# S4 method for class 'Chisq'
avar_mle(distr)

# S4 method for class 'Chisq'
avar_me(distr)

Arguments

df

numeric. The distribution degrees of freedom parameter.

distr

an object of class Chisq.

x

For the density function, x is a numeric vector of quantiles. For the moments functions, x is an object of class Chisq. For the log-likelihood and the estimation functions, x is the sample of observations.

log, log.p

logical. Should the logarithm of the probability be returned?

q

numeric. Vector of quantiles.

lower.tail

logical. If TRUE (default), probabilities are \(P(X \leq x)\), otherwise \(P(X > x)\).

p

numeric. Vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

type

character, case ignored. The estimator type (mle or me).

...

extra arguments.

na.rm

logical. Should the NA values be removed?

Value

Each type of function returns a different type of object:

  • Distribution Functions: When supplied with one argument (distr), the d(), p(), q(), r(), ll() functions return the density, cumulative probability, quantile, random sample generator, and log-likelihood functions, respectively. When supplied with both arguments (distr and x), they evaluate the aforementioned functions directly.

  • Moments: Returns a numeric, either vector or matrix depending on the moment and the distribution. The moments() function returns a list with all the available methods.

  • Estimation: Returns a list, the estimators of the unknown parameters. Note that in distribution families like the binomial, multinomial, and negative binomial, the size is not returned, since it is considered known.

  • Variance: Returns a named matrix. The asymptotic covariance matrix of the estimator.

Details

The probability density function (PDF) of the Chi-Square distribution is given by: $$ f(x; k) = \frac{1}{2^{k/2}\Gamma(k/2)} x^{k/2 - 1} e^{-x/2}, \quad x > 0.$$

See also

Functions from the stats package: dchisq(), pchisq(), qchisq(), rchisq()

Examples

# -----------------------------------------------------
# Chi-Square Distribution Example
# -----------------------------------------------------

# Create the distribution
df <- 4
D <- Chisq(df)

# ------------------
# dpqr Functions
# ------------------

d(D, c(0.3, 2, 20)) # density function
#> [1] 0.0645530982 0.1839397206 0.0002269996
p(D, c(0.3, 2, 20)) # distribution function
#> [1] 0.01018583 0.26424112 0.99950060
qn(D, c(0.4, 0.8)) # inverse distribution function
#> [1] 2.752843 5.988617
x <- r(D, 100) # random generator function

# alternative way to use the function
den <- d(D) ; den(x) # den is a function itself
#>   [1] 0.133953207 0.164372580 0.061167945 0.180660927 0.174835417 0.108700553
#>   [7] 0.138664831 0.040800770 0.162150332 0.013945291 0.093442703 0.180306346
#>  [13] 0.137114795 0.108305576 0.071478724 0.026122074 0.147013834 0.045141412
#>  [19] 0.176801357 0.140182239 0.165428195 0.177971246 0.179869433 0.183423316
#>  [25] 0.037316723 0.160314631 0.140127465 0.058395116 0.145650196 0.176000243
#>  [31] 0.038087718 0.183549972 0.183296800 0.167474672 0.179512445 0.092969911
#>  [37] 0.024571943 0.173870921 0.043376505 0.170032217 0.100929314 0.153545515
#>  [43] 0.178074797 0.175667801 0.182831762 0.180404260 0.183897326 0.118782037
#>  [49] 0.124520757 0.182993616 0.157269677 0.134646397 0.165900547 0.166826100
#>  [55] 0.082072134 0.178706289 0.032388255 0.140453386 0.178009998 0.016499929
#>  [61] 0.112873222 0.040779485 0.168101057 0.027434484 0.169054027 0.175343119
#>  [67] 0.003212128 0.179366331 0.043308014 0.114698982 0.122145926 0.053932259
#>  [73] 0.154485631 0.061410215 0.038025940 0.182701756 0.076429640 0.084788087
#>  [79] 0.032987205 0.135332434 0.177135342 0.126736451 0.153414844 0.123765081
#>  [85] 0.119646588 0.152191981 0.109532390 0.183845108 0.134598051 0.163049617
#>  [91] 0.158686700 0.055062468 0.072454775 0.158352837 0.063773699 0.179371874
#>  [97] 0.059828101 0.051063159 0.173934256 0.183076805

# ------------------
# Moments
# ------------------

mean(D) # Expectation
#> [1] 4
var(D) # Variance
#> [1] 8
sd(D) # Standard Deviation
#> [1] 2.828427
skew(D) # Skewness
#> [1] 1.414214
kurt(D) # Excess Kurtosis
#> [1] 3
entro(D) # Entropy
#> [1] 2.270363
finf(D) # Fisher Information Matrix
#>        df 
#> 0.1612335 

# List of all available moments
mom <- moments(D)
#> Warning: The median of the Chi-Squared Distribution is not
#>           available in closed-form. An approximation is provided.
mom$mean # expectation
#> [1] 4

# ------------------
# Point Estimation
# ------------------

ll(D, x)
#> [1] -226.357
llchisq(x, df)
#> [1] -226.357

echisq(x, type = "mle")
#> $df
#> [1] 3.577199
#> 
echisq(x, type = "me")
#> $df
#> [1] 3.693955
#> 

mle(D, x)
#> $df
#> [1] 3.577199
#> 
me(D, x)
#> $df
#> [1] 3.693955
#> 
e(D, x, type = "mle")
#> $df
#> [1] 3.577199
#> 

mle("chisq", x) # the distr argument can be a character
#> $df
#> [1] 3.577199
#> 

# ------------------
# Estimator Variance
# ------------------

vchisq(df, type = "mle")
#>       df 
#> 6.202184 
vchisq(df, type = "me")
#> df 
#>  8 

avar_mle(D)
#>       df 
#> 6.202184 
avar_me(D)
#> df 
#>  8 

v(D, type = "mle")
#>       df 
#> 6.202184