The Gamma distribution is an absolute continuous probability distribution with two parameters: shape \(\alpha > 0\) and scale \(\beta > 0\).
Usage
Gam(shape = 1, scale = 1)
# S4 method for class 'Gam,numeric'
d(distr, x, log = FALSE)
# S4 method for class 'Gam,numeric'
p(distr, q, lower.tail = TRUE, log.p = FALSE)
# S4 method for class 'Gam,numeric'
qn(distr, p, lower.tail = TRUE, log.p = FALSE)
# S4 method for class 'Gam,numeric'
r(distr, n)
# S4 method for class 'Gam'
mean(x)
# S4 method for class 'Gam'
median(x)
# S4 method for class 'Gam'
mode(x)
# S4 method for class 'Gam'
var(x)
# S4 method for class 'Gam'
sd(x)
# S4 method for class 'Gam'
skew(x)
# S4 method for class 'Gam'
kurt(x)
# S4 method for class 'Gam'
entro(x)
# S4 method for class 'Gam'
finf(x)
llgamma(x, shape, scale)
# S4 method for class 'Gam,numeric'
ll(distr, x)
egamma(x, type = "mle", ...)
# S4 method for class 'Gam,numeric'
mle(
distr,
x,
par0 = "same",
method = "L-BFGS-B",
lower = 1e-05,
upper = Inf,
na.rm = FALSE
)
# S4 method for class 'Gam,numeric'
me(distr, x, na.rm = FALSE)
# S4 method for class 'Gam,numeric'
same(distr, x, na.rm = FALSE)
vgamma(shape, scale, type = "mle")
# S4 method for class 'Gam'
avar_mle(distr)
# S4 method for class 'Gam'
avar_me(distr)
# S4 method for class 'Gam'
avar_same(distr)
Arguments
- shape, scale
numeric. The non-negative distribution parameters.
- distr
an object of class
Gam
.- x
For the density function,
x
is a numeric vector of quantiles. For the moments functions,x
is an object of classGam
. For the log-likelihood and the estimation functions,x
is the sample of observations.- log, log.p
logical. Should the logarithm of the probability be returned?
- q
numeric. Vector of quantiles.
- lower.tail
logical. If TRUE (default), probabilities are \(P(X \leq x)\), otherwise \(P(X > x)\).
- p
numeric. Vector of probabilities.
- n
number of observations. If
length(n) > 1
, the length is taken to be the number required.- type
character, case ignored. The estimator type (mle, me, or same).
- ...
extra arguments.
- par0, method, lower, upper
arguments passed to optim for the mle optimization. See Details.
- na.rm
logical. Should the
NA
values be removed?
Value
Each type of function returns a different type of object:
Distribution Functions: When supplied with one argument (
distr
), thed()
,p()
,q()
,r()
,ll()
functions return the density, cumulative probability, quantile, random sample generator, and log-likelihood functions, respectively. When supplied with both arguments (distr
andx
), they evaluate the aforementioned functions directly.Moments: Returns a numeric, either vector or matrix depending on the moment and the distribution. The
moments()
function returns a list with all the available methods.Estimation: Returns a list, the estimators of the unknown parameters. Note that in distribution families like the binomial, multinomial, and negative binomial, the size is not returned, since it is considered known.
Variance: Returns a named matrix. The asymptotic covariance matrix of the estimator.
Details
The probability density function (PDF) of the Gamma distribution is given by: $$ f(x; \alpha, \beta) = \frac{\beta^{-\alpha} x^{\alpha-1} e^{-x/\beta}}{\Gamma(\alpha)}, \quad x > 0. $$
The MLE of the gamma distribution parameters is not available in closed form
and has to be approximated numerically. This is done with optim()
. The
optimization can be performed on the shape parameter
\(\alpha\in(0,+\infty)\). The default method used is the L-BFGS-B method
with lower bound 1e-5
and upper bound Inf
. The par0
argument can either
be a numeric (satisfying lower <= par0 <= upper
) or a character specifying
the closed-form estimator to be used as initialization for the algorithm
("me"
or "same"
- the default value).
References
Wiens, D. P., Cheng, J., & Beaulieu, N. C. (2003). A class of method of moments estimators for the two-parameter gamma family. Pakistan Journal of Statistics, 19(1), 129-141.
Ye, Z. S., & Chen, N. (2017). Closed-form estimators for the gamma distribution derived from likelihood equations. The American Statistician, 71(2), 177-181.
Tamae, H., Irie, K. & Kubokawa, T. (2020), A score-adjusted approach to closed-form estimators for the gamma and beta distributions, Japanese Journal of Statistics and Data Science 3, 543–561.
Papadatos, N. (2022), On point estimators for gamma and beta distributions, arXiv preprint arXiv:2205.10799.
Examples
# -----------------------------------------------------
# Gamma Distribution Example
# -----------------------------------------------------
# Create the distribution
a <- 3 ; b <- 5
D <- Gam(a, b)
# ------------------
# dpqr Functions
# ------------------
d(D, c(0.3, 2, 10)) # density function
#> [1] 0.0003390352 0.0107251207 0.0541341133
p(D, c(0.3, 2, 10)) # distribution function
#> [1] 3.441824e-05 7.926332e-03 3.233236e-01
qn(D, c(0.4, 0.8)) # inverse distribution function
#> [1] 11.42538 21.39515
x <- r(D, 100) # random generator function
# alternative way to use the function
df <- d(D) ; df(x) # df is a function itself
#> [1] 0.035895119 0.053743332 0.039414356 0.014069829 0.019256917 0.046398545
#> [7] 0.054101078 0.054131386 0.007247814 0.007983775 0.029427730 0.038404705
#> [13] 0.051540371 0.054080143 0.001593671 0.050292018 0.049361212 0.042934341
#> [19] 0.029186593 0.007249341 0.042111499 0.053804345 0.035352916 0.020472016
#> [25] 0.017284996 0.053192521 0.048084602 0.020601132 0.051059421 0.050945937
#> [31] 0.047564047 0.050177120 0.028617257 0.054035666 0.047765225 0.049933452
#> [37] 0.037612929 0.053398545 0.048667246 0.044698009 0.038693718 0.039031014
#> [43] 0.041049829 0.052849212 0.028021300 0.025704862 0.046565777 0.052298014
#> [49] 0.034296820 0.046681135 0.052304951 0.048938425 0.046322748 0.026345973
#> [55] 0.051484673 0.029348053 0.052094877 0.030077529 0.003493075 0.051987391
#> [61] 0.022624384 0.050663301 0.019786741 0.043953325 0.046104069 0.044957171
#> [67] 0.053287657 0.028183125 0.053756380 0.028061800 0.047933534 0.049107138
#> [73] 0.043852622 0.052547558 0.019640593 0.035400255 0.038365867 0.047724512
#> [79] 0.032135621 0.053975057 0.054004620 0.036656794 0.041618440 0.009294019
#> [85] 0.003494763 0.050843067 0.046632274 0.052332642 0.049976857 0.050270826
#> [91] 0.028996493 0.001805018 0.049599480 0.053183519 0.052404912 0.007006395
#> [97] 0.052995803 0.038592712 0.053301933 0.037254951
# ------------------
# Moments
# ------------------
mean(D) # Expectation
#> [1] 15
median(D) # Median
#> [1] 13.3703
mode(D) # Mode
#> [1] 0.4
var(D) # Variance
#> [1] 75
sd(D) # Standard Deviation
#> [1] 8.660254
skew(D) # Skewness
#> [1] 1.154701
kurt(D) # Excess Kurtosis
#> [1] 2
entro(D) # Entropy
#> [1] 3.457016
finf(D) # Fisher Information Matrix
#> shape scale
#> shape 0.3949341 0.20
#> scale 0.2000000 0.12
# List of all available moments
mom <- moments(D)
mom$mean # expectation
#> [1] 15
# ------------------
# Point Estimation
# ------------------
ll(D, x)
#> [1] -339.6007
llgamma(x, a, b)
#> [1] -339.6007
egamma(x, type = "mle")
#> $shape
#> [1] 3.914281
#>
#> $scale
#> [1] 3.923344
#>
egamma(x, type = "me")
#> $shape
#> [1] 3.646524
#>
#> $scale
#> [1] 4.211428
#>
egamma(x, type = "same")
#> $shape
#> [1] 3.846913
#>
#> $scale
#> [1] 3.992051
#>
mle(D, x)
#> $shape
#> [1] 3.914281
#>
#> $scale
#> [1] 3.923344
#>
me(D, x)
#> $shape
#> [1] 3.646524
#>
#> $scale
#> [1] 4.211428
#>
same(D, x)
#> $shape
#> [1] 3.846913
#>
#> $scale
#> [1] 3.992051
#>
e(D, x, type = "mle")
#> $shape
#> [1] 3.914281
#>
#> $scale
#> [1] 3.923344
#>
mle("gam", x) # the distr argument can be a character
#> $shape
#> [1] 3.914281
#>
#> $scale
#> [1] 3.923344
#>
# ------------------
# Estimator Variance
# ------------------
vgamma(a, b, type = "mle")
#> shape scale
#> shape 16.23357 -27.05595
#> scale -27.05595 53.42659
vgamma(a, b, type = "me")
#> shape scale
#> shape 24 -40
#> scale -40 75
vgamma(a, b, type = "same")
#> shape scale
#> shape 16.66322 -27.77203
#> scale -27.77203 54.62006
avar_mle(D)
#> shape scale
#> shape 16.23357 -27.05595
#> scale -27.05595 53.42659
avar_me(D)
#> shape scale
#> shape 24 -40
#> scale -40 75
avar_same(D)
#> shape scale
#> shape 16.66322 -27.77203
#> scale -27.77203 54.62006
v(D, type = "mle")
#> shape scale
#> shape 16.23357 -27.05595
#> scale -27.05595 53.42659