Skip to contents

The Geometric distribution is a discrete probability distribution that models the number of failures before the first success in a sequence of independent Bernoulli trials, each with success probability \(0 < p \leq 1\).

Usage

Geom(prob = 0.5)

# S4 method for class 'Geom,numeric'
d(distr, x, log = FALSE)

# S4 method for class 'Geom,numeric'
p(distr, q, lower.tail = TRUE, log.p = FALSE)

# S4 method for class 'Geom,numeric'
qn(distr, p, lower.tail = TRUE, log.p = FALSE)

# S4 method for class 'Geom,numeric'
r(distr, n)

# S4 method for class 'Geom'
mean(x)

# S4 method for class 'Geom'
median(x)

# S4 method for class 'Geom'
mode(x)

# S4 method for class 'Geom'
var(x)

# S4 method for class 'Geom'
sd(x)

# S4 method for class 'Geom'
skew(x)

# S4 method for class 'Geom'
kurt(x)

# S4 method for class 'Geom'
entro(x)

# S4 method for class 'Geom'
finf(x)

llgeom(x, prob)

# S4 method for class 'Geom,numeric'
ll(distr, x)

egeom(x, type = "mle", ...)

# S4 method for class 'Geom,numeric'
mle(distr, x, na.rm = FALSE)

# S4 method for class 'Geom,numeric'
me(distr, x, na.rm = FALSE)

vgeom(prob, type = "mle")

# S4 method for class 'Geom'
avar_mle(distr)

# S4 method for class 'Geom'
avar_me(distr)

Arguments

prob

numeric. Probability of success.

distr

an object of class Geom.

x

For the density function, x is a numeric vector of quantiles. For the moments functions, x is an object of class Geom. For the log-likelihood and the estimation functions, x is the sample of observations.

log, log.p

logical. Should the logarithm of the probability be returned?

q

numeric. Vector of quantiles.

lower.tail

logical. If TRUE (default), probabilities are \(P(X \leq x)\), otherwise \(P(X > x)\).

p

numeric. Vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

type

character, case ignored. The estimator type (mle or me).

...

extra arguments.

na.rm

logical. Should the NA values be removed?

Value

Each type of function returns a different type of object:

  • Distribution Functions: When supplied with one argument (distr), the d(), p(), q(), r(), ll() functions return the density, cumulative probability, quantile, random sample generator, and log-likelihood functions, respectively. When supplied with both arguments (distr and x), they evaluate the aforementioned functions directly.

  • Moments: Returns a numeric, either vector or matrix depending on the moment and the distribution. The moments() function returns a list with all the available methods.

  • Estimation: Returns a list, the estimators of the unknown parameters. Note that in distribution families like the binomial, multinomial, and negative binomial, the size is not returned, since it is considered known.

  • Variance: Returns a named matrix. The asymptotic covariance matrix of the estimator.

Details

The probability mass function (PMF) of the Geometric distribution is: $$ P(X = k) = (1 - p)^k p, \quad k \in \mathbb{N}_0.$$

See also

Functions from the stats package: dgeom(), pgeom(), qgeom(), rgeom()

Examples

# -----------------------------------------------------
# Geom Distribution Example
# -----------------------------------------------------

# Create the distribution
p <- 0.4
D <- Geom(p)

# ------------------
# dpqr Functions
# ------------------

d(D, 0:4) # density function
#> [1] 0.40000 0.24000 0.14400 0.08640 0.05184
p(D, 0:4) # distribution function
#> [1] 0.40000 0.64000 0.78400 0.87040 0.92224
qn(D, c(0.4, 0.8)) # inverse distribution function
#> [1] 0 3
x <- r(D, 100) # random generator function

# alternative way to use the function
df <- d(D) ; df(x) # df is a function itself
#>   [1] 0.03110400 0.40000000 0.24000000 0.24000000 0.05184000 0.24000000
#>   [7] 0.24000000 0.40000000 0.14400000 0.24000000 0.40000000 0.40000000
#>  [13] 0.40000000 0.01866240 0.03110400 0.08640000 0.40000000 0.40000000
#>  [19] 0.40000000 0.40000000 0.14400000 0.24000000 0.40000000 0.05184000
#>  [25] 0.05184000 0.40000000 0.14400000 0.24000000 0.40000000 0.40000000
#>  [31] 0.40000000 0.14400000 0.24000000 0.05184000 0.01866240 0.14400000
#>  [37] 0.24000000 0.40000000 0.08640000 0.24000000 0.40000000 0.14400000
#>  [43] 0.40000000 0.24000000 0.01119744 0.40000000 0.40000000 0.05184000
#>  [49] 0.14400000 0.40000000 0.40000000 0.40000000 0.40000000 0.40000000
#>  [55] 0.14400000 0.24000000 0.40000000 0.40000000 0.24000000 0.08640000
#>  [61] 0.40000000 0.40000000 0.40000000 0.14400000 0.40000000 0.40000000
#>  [67] 0.40000000 0.08640000 0.08640000 0.14400000 0.05184000 0.24000000
#>  [73] 0.40000000 0.40000000 0.40000000 0.08640000 0.14400000 0.40000000
#>  [79] 0.24000000 0.24000000 0.40000000 0.24000000 0.01866240 0.40000000
#>  [85] 0.14400000 0.14400000 0.24000000 0.08640000 0.05184000 0.24000000
#>  [91] 0.05184000 0.14400000 0.40000000 0.40000000 0.24000000 0.40000000
#>  [97] 0.40000000 0.40000000 0.05184000 0.08640000

# ------------------
# Moments
# ------------------

mean(D) # Expectation
#> [1] 1.5
median(D) # Median
#> [1] 1
mode(D) # Mode
#> [1] 0
var(D) # Variance
#> [1] 3.75
sd(D) # Standard Deviation
#> [1] 1.936492
skew(D) # Skewness
#> [1] 2.065591
kurt(D) # Excess Kurtosis
#> [1] 6.266667
entro(D) # Entropy
#> [1] 1.682529
finf(D) # Fisher Information Matrix
#> [1] 10.41667

# List of all available moments
mom <- moments(D)
mom$mean # expectation
#> [1] 1.5

# ------------------
# Point Estimation
# ------------------

ll(D, x)
#> [1] -164.6771
llgeom(x, p)
#> [1] -164.6771

egeom(x, type = "mle")
#> $prob
#> [1] 0.4115226
#> 
egeom(x, type = "me")
#> $prob
#> [1] 0.4115226
#> 

mle(D, x)
#> $prob
#> [1] 0.4115226
#> 
me(D, x)
#> $prob
#> [1] 0.4115226
#> 
e(D, x, type = "mle")
#> $prob
#> [1] 0.4115226
#> 

mle("geom", x) # the distr argument can be a character
#> $prob
#> [1] 0.4115226
#> 

# ------------------
# Estimator Variance
# ------------------

vgeom(p, type = "mle")
#>  prob 
#> 0.096 
vgeom(p, type = "me")
#>  prob 
#> 0.096 

avar_mle(D)
#>  prob 
#> 0.096 
avar_me(D)
#>  prob 
#> 0.096 

v(D, type = "mle")
#>  prob 
#> 0.096