Skip to contents

The Lognormal distribution is an absolute continuous probability distribution of a random variable whose logarithm is normally distributed. It is defined by parameters \(\mu\) and \(\sigma > 0\), which are the mean and standard deviation of the underlying normal distribution.

Usage

Lnorm(meanlog = 0, sdlog = 1)

# S4 method for class 'Lnorm,numeric'
d(distr, x, log = FALSE)

# S4 method for class 'Lnorm,numeric'
p(distr, q, lower.tail = TRUE, log.p = FALSE)

# S4 method for class 'Lnorm,numeric'
qn(distr, p, lower.tail = TRUE, log.p = FALSE)

# S4 method for class 'Lnorm,numeric'
r(distr, n)

# S4 method for class 'Lnorm'
mean(x)

# S4 method for class 'Lnorm'
median(x)

# S4 method for class 'Lnorm'
mode(x)

# S4 method for class 'Lnorm'
var(x)

# S4 method for class 'Lnorm'
sd(x)

# S4 method for class 'Lnorm'
skew(x)

# S4 method for class 'Lnorm'
kurt(x)

# S4 method for class 'Lnorm'
entro(x)

# S4 method for class 'Lnorm'
finf(x)

lllnorm(x, meanlog, sdlog)

# S4 method for class 'Lnorm,numeric'
ll(distr, x)

elnorm(x, type = "mle", ...)

# S4 method for class 'Lnorm,numeric'
mle(distr, x, na.rm = FALSE)

# S4 method for class 'Lnorm,numeric'
me(distr, x, na.rm = FALSE)

vlnorm(meanlog, sdlog, type = "mle")

# S4 method for class 'Lnorm'
avar_mle(distr)

# S4 method for class 'Lnorm'
avar_me(distr)

Arguments

meanlog, sdlog

numeric. The distribution parameters.

distr

an object of class Lnorm.

x

For the density function, x is a numeric vector of quantiles. For the moments functions, x is an object of class Lnorm. For the log-likelihood and the estimation functions, x is the sample of observations.

log, log.p

logical. Should the logarithm of the probability be returned?

q

numeric. Vector of quantiles.

lower.tail

logical. If TRUE (default), probabilities are \(P(X \leq x)\), otherwise \(P(X > x)\).

p

numeric. Vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

type

character, case ignored. The estimator type (mle or me).

...

extra arguments.

na.rm

logical. Should the NA values be removed?

Value

Each type of function returns a different type of object:

  • Distribution Functions: When supplied with one argument (distr), the d(), p(), q(), r(), ll() functions return the density, cumulative probability, quantile, random sample generator, and log-likelihood functions, respectively. When supplied with both arguments (distr and x), they evaluate the aforementioned functions directly.

  • Moments: Returns a numeric, either vector or matrix depending on the moment and the distribution. The moments() function returns a list with all the available methods.

  • Estimation: Returns a list, the estimators of the unknown parameters. Note that in distribution families like the binomial, multinomial, and negative binomial, the size is not returned, since it is considered known.

  • Variance: Returns a named matrix. The asymptotic covariance matrix of the estimator.

Details

The probability density function (PDF) of the Lognormal distribution is: $$ f(x; \mu, \sigma) = \frac{1}{x \sigma \sqrt{2\pi}} e^{-\frac{(\log x - \mu)^2}{2 \sigma^2}}, \quad x > 0 .$$

See also

Functions from the stats package: dlnorm(), plnorm(), qlnorm(), rlnorm()

Examples

# -----------------------------------------------------
# Lnorm Distribution Example
# -----------------------------------------------------

# Create the distribution
m <- 3 ; s <- 5
D <- Lnorm(m, s)

# ------------------
# dpqr Functions
# ------------------

d(D, c(0.3, 2, 10)) # density function
#> [1] 0.186771116 0.035866376 0.007901606
p(D, c(0.3, 2, 10)) # distribution function
#> [1] 0.2002315 0.3222664 0.4445343
qn(D, c(0.4, 0.8)) # inverse distribution function
#> [1]    5.659098 1350.332541
x <- r(D, 100) # random generator function

# alternative way to use the function
df <- d(D) ; df(x) # df is a function itself
#>   [1] 3.772171e-03 6.671290e-04 2.517216e-01 2.635158e-01 2.382044e-02
#>   [6] 1.684454e-02 4.383061e-07 1.117212e+01 8.996097e-03 2.162057e-03
#>  [11] 8.727851e-02 4.899467e-02 1.713367e-02 6.732309e-02 1.853741e-02
#>  [16] 8.113191e-04 5.324813e-05 1.356071e-07 1.017682e-03 7.736096e-04
#>  [21] 8.264750e-03 7.530464e-04 1.906528e-02 1.468408e-01 4.347717e-03
#>  [26] 9.125370e-03 8.930959e-03 8.686833e-05 1.179629e-03 2.959542e+01
#>  [31] 2.667211e-03 3.092216e-02 2.389078e-02 4.967730e-03 1.347887e-06
#>  [36] 1.708972e-02 3.116280e-01 2.131902e-07 1.426817e-01 1.118841e-03
#>  [41] 3.133833e-01 4.157483e-01 4.424566e-01 1.086775e-02 2.435180e-06
#>  [46] 2.668187e-04 1.550838e+00 3.593631e-01 8.414336e-04 4.046170e-04
#>  [51] 8.304027e-02 3.819082e+01 9.643371e-04 1.150166e-02 4.434309e-04
#>  [56] 2.656873e-04 3.249186e-01 4.667622e-05 7.738186e-07 2.445277e-04
#>  [61] 5.416448e-08 8.213517e-05 7.023487e-03 5.885826e-05 9.509842e-08
#>  [66] 2.548425e-02 1.261995e-10 3.515978e-06 1.039084e+01 1.134171e-04
#>  [71] 5.039501e-02 7.760113e-06 1.411286e-06 2.252489e-03 1.029574e-03
#>  [76] 1.558956e-05 4.999391e-03 8.378587e-02 3.263977e-01 1.408740e-02
#>  [81] 2.805362e+00 4.975963e-03 1.067992e-04 2.357552e-04 1.502800e-04
#>  [86] 8.716583e-02 2.010319e-06 5.689029e-01 1.024153e-04 6.980956e-02
#>  [91] 2.143243e-02 7.201897e-06 5.724365e-07 8.511594e-06 6.702402e-04
#>  [96] 1.328477e+01 4.146778e-02 5.373587e-03 4.034312e-04 8.253889e-01

# ------------------
# Moments
# ------------------

mean(D) # Expectation
#> [1] 5389698
median(D) # Median
#> [1] 20.08554
mode(D) # Mode
#> [1] 2.789468e-10
var(D) # Variance
#> [1] 2.091659e+24
sd(D) # Standard Deviation
#> [1] 1.446257e+12
skew(D) # Skewness
#> [1] 1.93216e+16
kurt(D) # Excess Kurtosis
#> [1] 2.688117e+43
entro(D) # Entropy
#> [1] 8.697109
finf(D) # Fisher Information Matrix
#>         meanlog sdlog
#> meanlog     0.2   0.0
#> sdlog       0.0   0.4

# List of all available moments
mom <- moments(D)
mom$mean # expectation
#> [1] 5389698

# ------------------
# Point Estimation
# ------------------

elnorm(x, type = "mle")
#> $meanlog
#> [1] 3.10186
#> 
#> $sdlog
#> [1] 4.823037
#> 
elnorm(x, type = "me")
#> $meanlog
#> [1] 3.10186
#> 
#> $sdlog
#> [1] 4.823037
#> 

mle(D, x)
#> $meanlog
#> [1] 3.10186
#> 
#> $sdlog
#> [1] 4.823037
#> 
me(D, x)
#> $meanlog
#> [1] 3.10186
#> 
#> $sdlog
#> [1] 4.823037
#> 
e(D, x, type = "mle")
#> $meanlog
#> [1] 3.10186
#> 
#> $sdlog
#> [1] 4.823037
#> 

mle("lnorm", x) # the distr argument can be a character
#> $meanlog
#> [1] 3.10186
#> 
#> $sdlog
#> [1] 4.823037
#> 

# ------------------
# Estimator Variance
# ------------------

vlnorm(m, s, type = "mle")
#>         meanlog sdlog
#> meanlog       5   0.0
#> sdlog         0   2.5
vlnorm(m, s, type = "me")
#>         meanlog sdlog
#> meanlog       5   0.0
#> sdlog         0   2.5

avar_mle(D)
#>         meanlog sdlog
#> meanlog       5   0.0
#> sdlog         0   2.5
avar_me(D)
#>         meanlog sdlog
#> meanlog       5   0.0
#> sdlog         0   2.5

v(D, type = "mle")
#>         meanlog sdlog
#> meanlog       5   0.0
#> sdlog         0   2.5